Examples of Buchsbaum Quasi-Gorenstein Rings
نویسندگان
چکیده
منابع مشابه
Gorenstein rings through face rings of manifolds
The face ring of a homology manifold (without boundary) modulo a generic system of parameters is studied. Its socle is computed and it is verified that a particular quotient of this ring is Gorenstein. This fact is used to prove that the sphere g-conjecture implies all enumerative consequences of its far reaching generalization (due to Kalai) to manifolds. A special case of Kalai’s manifold g-c...
متن کاملThe Equality I = Qi in Buchsbaum Rings
Let A be a Noetherian local ring with the maximal ideal m and d = dim A. Let Q be a parameter ideal in A. Let I = Q : m. The problem of when the equality I = QI holds true is explored. When A is a Cohen-Macaulay ring, this problem was completely solved by A. Corso, C. Huneke, C. Polini, and W. Vasconcelos [CHV, CP, CPV], while nothing is known when A is not a Cohen-Macaulay ring. The present pu...
متن کاملBuchsbaum Stanley–reisner Rings with Minimal Multiplicity
In this paper, we study non-Cohen–Macaulay Buchsbaum Stanley– Reisner rings with linear free resolution. In particular, for given integers c, d, q with c ≥ 1, 2 ≤ q ≤ d, we give an upper bound hc,d,q on the dimension of the unique non-vanishing homology H̃q−2(∆; k) of a d-dimensional Buchsbaum ring k[∆] with q-linear resolution and codimension c. Also, we discuss about existence for such Buchsba...
متن کاملIntersection Multiplicities over Gorenstein Rings
LetR be a complete local ring of dimension d over a perfect field of prime characteristic p, and let M be an R-module of finite length and finite projective dimension. S. Dutta showed that the equality limn→∞ `(F n R(M)) pnd = `(M) holds when the ring R is a complete intersection or a Gorenstein ring of dimension at most 3. We construct a module over a Gorenstein ring R of dimension five for wh...
متن کاملPurity and Gorenstein Filtered Rings
In this paper, we discuss on the existence of filtrations of modules having good properties. In particular, we focus on filtered homomorphisms called strict, and show that there exists a filtration which makes a filtered homomorphism a strict filtered homomorphism. Moreover, by using this result, we study purity for filtered modules over a Gorenstein filtered ring.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1993
ISSN: 0002-9939
DOI: 10.2307/2159118